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The BCS Variational Calculation

0.1 Expectation values
We first evaluated the expectation value 〈ΨBCS |H − µNop |ΨBCS〉 for the ki-
netic energy and the potential energy using the properties of the creation and
annihilation operators. The result is
〈ΨBCS |H − µNop |ΨBCS〉 = 2

∑
k ξk |vk|

2
+
∑
k,l Vk,lukv

∗
ku

∗
l vl.

The kinetic energy is the sum over all k-states of the single-particle energies
times the probability that the Cooper pair at that momentum state is occupied,
times 2 for the two electrons that make up the Cooper pair. The potential
energy is constrained by matrix elements. Initially the Cooper pair at (l,−l)
must be occupied while that at (k,−k) must be empty. In the final state the
pair at (k,−k) must be filled while that at (l,−l) is left empty. This brings in
the four factors of u’s and v’s.

0.2 The variational Calculation
The actual calculation is quite simple and elegant. Assume for now that the
u’s and v’s are real. This is OK because it assumes for the moment that the
macroscopic phase of the coherent state Cooper pair WF is fixed at zero. Given
the constraint that |uk|2 + |vk|2 = 1, one has just a single parameter, namely
the angle θk to keep track of, such that uk = sin(θk) and vk = cos(θk).
The terms in the expectation value can now be written using double angle for-
mulas as v2

k = cos2(θk) = 1
2 (1 + cos(2θk)), and ukvkulvl = 1

2 sin(2θk) 1
2 sin(2θl).

The expectation value is now
〈ΨBCS |H − µNop |ΨBCS〉 =

∑
k ξk(1 + cos(2θk)) + 1

4

∑
k,l Vk,l sin(2θk) sin(2θl).

Taking the derivative with respect to θk′ yields the following result,
tan(2θk) = 1

2ξk

∑
l Vk,l sin(2θl).

0.3 Definition of the Energy gap and Quasiparticle Energy
Make the following two definitions:
∆k ≡ −

∑
l Vk,lulvl = − 1

2

∑
l Vk,l sin(2θl), which defines the "energy gap" of the
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superconductor. This will turn out to be the gap in the single-particle excita-
tion spectrum out of the ground state. It can also serve informally as a rough
"order parameter" of the superconducting state, although this is not a rigorous
definition.
Ek ≡

√
∆2
k + ξ2

k is the quasiparticle energy.
With these definitions, the variational equation can now be written as,
tan(2θk) = −∆k

ξk
.

With some further trigonometric gamesmanship, one can write the u’s and
v’s in terms of these newly defined quantities:
sin(2θk) = 2ukvk = +∆k

Ek

and, cos(2θk) = v2
k − u2

k = − ξk
Ek

0.4 Self-Consistent Gap Equation
Now use the above expression for the product of ukvk back in the definition of
the energy gap to obtain the celebrated self-consistent gap equation:
∆k = − 1

2

∑
l

∆l√
∆2

l +ξ2l
Vk,l. In general this can be challenging to solve, but we

will consider two simple cases here.

First look at the trivial solution ∆k = 0 for all k. Going back to the u’s and
v’s, this means that
sin(2θk) = 2ukvk = 0 for all k and,

cos(2θk) = v2
k − u2

k = − ξk
Ek

=

{
−1 ξk > 0
+1 ξk < 0

This is a peculiar situation in which all Cooper states are occupied below ξ = 0
and all Cooper pair states are un-occupied above ξ = 0. In other words: uk = 1
and vk = 0 for ξk > 0, and uk = 0 and vk = 1 for ξk < 0. Roughly speaking
this is like the state |F 〉 that we introduced earlier, but it involves all electrons
being bound in Cooper pairs with properly anti-symmetrized WFs inside the
Fermi sphere, and all states outside un-occupied.
However, consider the potential energy term

∑
k,l Vk,lukvkulvl. This term is

identically zero as it has zero contributions from all k because of the result that
2ukvk = 0. Hence this "normal state" does not take advantage of the pairing
interaction and is not a superconductor! Next we will find a non-trivial solution
to the self-consistent gap equation.
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